Lecture 160:
Finite Automata
Part 3 of 3



Recap from Last TIme



N FASs

e An NFA is a

* Nondeterministic
 Finite
« Automaton

« NFAs have no
restrictions on how
many transitions are
allowed per state.

* They can also use &-
transitions.

* An NFA accepts a
string w if there is
some sequence of
choices that leads to
an accepting state.



Massive Parallelism

 An NFA can be thought of as a DFA that
can be in many states at once.

* At each point in time, when the NFA
needs to follow a transition, it tries all
the options at the same time.

« The NFA accepts if any of the states that
are active at the end are accepting
states. It rejects otherwise.



New Stuff!



Just how powerful are NFAsS?



NFAs and DFAs

 Any language that can be accepted by a
DFA can be accepted by an NFA.

« Why?
 Every DFA essentially already is an NFA!

* Question: Can any language accepted by
an NFA also be accepted by a DFA?

* Surprisingly, the answer is yes!



Thought Experiment:
How would you simulate an NFA in
software?





































































[~

{qo} {qo, q1}













2

{qo} 1qo, q1} {qo}




2

{qo} 1qo, q1} {qo}




2

{qo} 1qo, q1} {qo}




2

{qo} 1qo, q1} {qo}

{qo, q1}




{qo}

{qo, q1}

{qo}

{qo, q1}




{qo}

{qo, q1}

{qo}

{qo, q1}













2

{qo} 1qo, q1} {qo}

{qo, q1}




2

{qo} 1qo, q1} {qo}

{qo, q1} {qo, q1}




{qo}

{qo, q1}

{qo}

{qo, q1}

{qo, q1}




{qo}

{qo, q1}

{qo}

{qo, q1}

{qo, q1}













2

{qo} 1qo, q1} {qo}

{qo, q1} {qo, q1} {qo, q2}




2

{qo} 1qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}

{qo, q2}






















2

{qo} 1qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}

{qo, g2} {qo, q1, q3}













2

{qo} 1qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}

{qo, g2} {qo, q1, q3}




2

{qo} 1qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}

{qo, g2} {qo, q1, q3}




2

{qo} 1qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}

{qo, q2} {qo, q1, q3} {qo}




2

{qo} 1qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}

{qo, q2} {qo, q1, q3} {qo}




{qo} {qo, q1} {qo}

{qo, q1} {qo, q1} {qo, q2}

{qo, g2} {qo, q1, q3} {qo}

{qo, q1, g3}

Fill in this row.

Answer at
https://cs103.stanford.edu/pollev



https://cs103.stanford.edu/pollev

2

__— a b
{qo} {qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}
{qo, q2} {qo, q1, g3} {qo}
{qo, q1, g3}




{qo} 1qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}
{qo, q2} {qo, q1, q3} {qo}

{qo, q1, q3}
















2

__— a b
{qo} {qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}
{qo, q2} {qo, q1, g3} {qo}
{qo, q1, g3} {qo, q1}




2

__— a b
{qo} {qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}
{qo, q2} {qo, q1, g3} {qo}
{qo, q1, g3} {qo, q1}




{qo} {qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}
{qo, q2} {qo, q1, g3} {qo}

{qo, q1, g3} {qo, q1}




{qo} {qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}
{qo, q2} {qo, q1, g3} {qo}

{qo, q1, g3} {qo, q1}
















2

__— a b
{qo} {qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}
{qo, q2} {qo, q1, g3} {qo}
{qo, q1, g3} {qo, q1} {qo, q2}




2

__— a b
{qo} {qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}
{qo, q2} {qo, q1, g3} {qo}
{qo, q1, g3} {qo, q1} {qo, q2}
b a
4 4

ﬂ{ {qo} } a >[{qo, qi}
\ b

[ {qo, g2}

\ d

b T{qo, qs, q:a}]

h




2

__— a b
{qo} {qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}
{qo, q2} {qo, q1, g3} {qo}
{qo, q1, g3} {qo, q1} {qo, q2}
b a
4 4

ﬂ{ {qo} } a >[{qo, qi}
\ b

[ {qo, g2}

\ d

b T{qo, qs, q:a}]

h




2

__— a b
{qo} {qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}
{qo, q2} {qo, q1, g3} {qo}
*{qo, q1, g3} {qo, q1} {qo, q2}
b a
| |

ﬂ{ {qo} } a >[{qo, qi}
\ b

[ {qo, g2}

\ d

b T{qo, qs, q:a}]

h




2

__— a b
{qo} {qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}
{qo, q2} {qo, q1, g3} {qo}
*{qo, q1, g3} {qo, q1} {qo, q2}
b a
| |

ﬂ:’[ {qo} } 9 ’[ {qo, q1}
\ ib a
N\ a

[ 14o, CIZ}L b T[{CIO,CILCISH]




2

__— a b
{qo} {qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}
{qo, q2} {qo, q1, g3} {qo}
*{qo, q1, g3} {qo, q1} {qo, q2}
b a
| |

ﬂ:’[ {qo} } 9 ’[ {qo, q1}
\ ib a
N\ a

[ 14o, CIZ}L b T[{CIO,CILCISH]










2

b a a b a

b a
R | 4

start (o) } a ’[{qe, a1}
\ ib a

[ {qo, CIZ}L : T[{CIO,CILCISH]




a
L1

R

[ {qo, CIZ}L : T[{CIO,CILCISH]




b a
R | 4

start (o) } a ’[{qe, a1}
\ ib a

[{qo, CIZ}L : T[{CIO,CILCISH]




b a
R | 4

start (o) } a ’[{qe, a1}
'\ ib a

[ {qo, CIZ}L : >[[{qo,ql,qs}]]




b a
R | 4

start (o) } a >[{qO, ]
\ ib a

[ {qo, CIZ}L : T[{CIO,CILCISH]




b a
R | 4

start (o) } a ’[{qe, a1}
\ ib a

[{qo, CIZ}L : T[{CIO,CILCISH]







The Subset Construction

* This procedure for turning an NFA for a language L into a
DFA for a language L is called the subset construction.

« It’s sometimes called the powerset construction; it’s different
names for the same thing!
 Intuitively:
« Each state in the DFA corresponds to a set of states from the NFA.

 Each transition in the DFA corresponds to what transitions would
be taken in the NFA when using the massive parallel intuition.

 The accepting states in the DFA correspond to which sets of states
would be considered accepting in the NFA when using the massive
parallel intuition.

e There’s an online Guide to the Subset Construction with
a more elaborate example involving e-transitions and cases
where the NFA dies; check that for more details.



The Subset Construction

In converting an NFA to a DFA, the DFA's
states correspond to sets of NFA states.

Useful fact: |»(S)| = 215 for any finite set S.

In the worst-case, the construction can
result in a DFA that is exponentially larger
than the original NFA.

Question to ponder: Can you find a family
of languages that have NFAs of size n, but
no DFAs of size less than 2"?



Regular Languages

* A language L is called regular when there’s
a DFA D that recognizes L (that is, (D) = L).

« Theorem: A language L is regular if and
only if there’s an NFA N that recognizes it
(that is, £(N) = L).

» This fact makes it possible to explore regular
languages by considering either DFAs or
NFAs.



Time-Out for Announcements!



Please see Sean’s post on Ed
for today’s announcements.



Back to CS103!



Motivating Example: Numbers



Numbers

 Numbers can be written in many ways:
2718
2,718
2.718 x 103
MMDCCXVIII
s e =R pAN
N 'wna
GN9EL)

uoagnr
etc.

« How would we design a DFA or NFA that checks if a
particular string is a number in some numeral system?






Numbers

2,718




Practical Question: If we can build a
bunch of finite automata that all recognize
certain patterns, can we build a single
finite automaton that recognizes all of
those patterns?



Closure Under Union

« If L. and L2 are languages over the alphabet %, the
language L1 U L2 is the language of all strings in
at least one of the two languages.

* Intuitively, if L1 and L2 correspond to languages of
strings with one of two different patterns, then
L1 U Lz is the language of strings with at least one
of those patterns.

« Theorem: If L1 and Lz are regular, so is L1 U L.



Li={we€{a, b}*| whas even length }
L>={w € {a, b}* | whas length exactly three }

Construct an NFA for L1 U Lo.



start (O) i O

DFA for La

Li={we€{a, b}*| whas even length }
L>={w € {a, b}* | whas length exactly three }

Construct an NFA for L1 U Lo.



start (O) i O

DFA for La

NFA for L2

Li={we€{a, b}*| whas even length }
L>={w € {a, b}* | whas length exactly three }

Construct an NFA for L1 U Lo.



2
star
2
DFA for L1
ROROEOKe

NFA for L2

Li={we€{a, b}*| whas even length }
L>={w € {a, b}* | whas length exactly three }

Construct an NFA for L1 U Lo.



NFA for L2

Li={we€{a, b}*| whas even length }
L>={w € {a, b}* | whas length exactly three }

Construct an NFA for L1 U Lo.



NFA for L2

a b ab a b

Li={we€{a, b}*| whas even length }
L>={w € {a, b}* | whas length exactly three }

Construct an NFA for L1 U Lo.



NFA for L2

a b ab a b

Li={we€{a, b}*| whas even length }
L>={w € {a, b}* | whas length exactly three }

Construct an NFA for L1 U Lo.



NFA for L2

a b ab a b

Li={we€{a, b}*| whas even length }
L>={w € {a, b}* | whas length exactly three }

Construct an NFA for L1 U Lo.



NFA for L2

a b ab a b

Li={we€{a, b}*| whas even length }
L>={w € {a, b}* | whas length exactly three }

Construct an NFA for L1 U Lo.



NFA for L2

a b ab a b

Li={we€{a, b}*| whas even length }
L>={w € {a, b}* | whas length exactly three }

Construct an NFA for L1 U Lo.



NFA for L2

b a b

Li={we€{a, b}*| whas even length }
L>={w € {a, b}* | whas length exactly three }

Construct an NFA for L1 U Lo.



NFA for L2

a b ab a b

Li={we€{a, b}*| whas even length }
L>={w € {a, b}* | whas length exactly three }

Construct an NFA for L1 U Lo.



NFA for L2

a b ab a b

4

Li={we€{a, b}*| whas even length }
L>={w € {a, b}* | whas length exactly three }

Construct an NFA for L1 U Lo.



NFA for L2

a b ab a b

4

Li={we€{a, b}*| whas even length }
L>={w € {a, b}* | whas length exactly three }

Construct an NFA for L1 U Lo.



NFA for L2

a b ab a b

4

Li={we€{a, b}*| whas even length }
L>={w € {a, b}* | whas length exactly three }

Construct an NFA for L1 U Lo.



NFA for L2

a b ab a b

Li={we€{a, b}*| whas even length }
L>={w € {a, b}* | whas length exactly three }

Construct an NFA for L1 U Lo.



NFA for L2

Li={we€{a, b}*| whas even length }
L>={w € {a, b}* | whas length exactly three }

Construct an NFA for L1 U Lo.



NFA for L2

b a a

4

Li={we€{a, b}*| whas even length }
L>={w € {a, b}* | whas length exactly three }

Construct an NFA for L1 U Lo.



NFA for L2

b a a

4

Li={we€{a, b}*| whas even length }
L>={w € {a, b}* | whas length exactly three }

Construct an NFA for L1 U Lo.



NFA for L2

b a a

4

Li={we€{a, b}*| whas even length }
L>={w € {a, b}* | whas length exactly three }

Construct an NFA for L1 U Lo.



NFA for L2

b a a

4

Li={we€{a, b}*| whas even length }
L>={w € {a, b}* | whas length exactly three }

Construct an NFA for L1 U Lo.



NFA for L2

b a a

4

Li={we€{a, b}*| whas even length }
L>={w € {a, b}* | whas length exactly three }

Construct an NFA for L1 U Lo.



NFA for L2

b a a

4

Li={we€{a, b}*| whas even length }
L>={w € {a, b}* | whas length exactly three }

Construct an NFA for L1 U Lo.



NFA for L2

b a a

Li={we€{a, b}*| whas even length }
L>={w € {a, b}* | whas length exactly three }

Construct an NFA for L1 U Lo.



Closure Under Intersection

If L1 and Lz are languages over %, then L1 N Lz is the
language of strings in both Li and Le-.

Intuitively, L1 N Lz is the set of strings meeting the
requirements of each language.

Theorem: If L1 and L2 are regular, so is L1 N Lo.



Closure Under Intersection

If L1 and L2 are languages over 2, then L1 N Lz is the
language of strings in both Li1 and Le-.

Intuitively, L1 N Lz is the set of strings meeting the
requirements of each language.

Theorem: If .. and Lz are regular, so is L1 N L.




Closure Under Intersection

If L1 and Lz are languages over %, then L1 N Lz is the
language of strings in both L1 and L.

Intuitively, L1 N Lz is the set of strings meeting the
requirements of each language.

Theorem: If L1 and Lz are regular, so is L1 N L.




Closure Under Intersection

If L1 and Lz are languages over %, then L1 N Lz is the
language of strings in both L1 and L.

Intuitively, L1 N Lz is the set of strings meeting the
requirements of each language.

Theorem: If L1 and Lz are regular, so is L1 N L.




Closure Under Intersection

If L1 and Lz are languages over %, then L1 N Lz is the
language of strings in both L1 and L.

Intuitively, L1 N Lz is the set of strings meeting the
requirements of each language.

Theorem: If L1 and Lz are regular, so is L1 N L.

Hey, iT's De
Morgan's laws:




Concatenation



Numbers

 Numbers can be written in many ways:
2718
2,718
2.718 x 103
MMDCCXVIII
s e =R pAN
N 'wna
GN9EL)

uoagnr
etc.

« How would we design a DFA or NFA that checks if a
particular string is a number in some numeral system?



2.718 x 103






Question: If you can build finite automata
to match the first and second halves of a
pattern, can you build a single finite
automaton that matches the full pattern?



String Concatenation

e [fw € 2* and x € X*, the concatenation of w and x,
denoted wkx, is the string formed by tacking all the
characters of x onto the end of w.

 Example: if w = quo and x = kka, the concatenation
wXx = quokka.

« This is analogous to the + operator for strings in many
programming languages.
« Some facts about concatenation:
« The empty string ¢ is the identity element for concatenation:
WE = EW =W
 Concatenation is associative:
wxy = w(xy) = (wx)y



Concatenation

 The concatenation of two languages L1 and
L2 over the alphabet X is the language

Lilz = { x| 3w1 € L1. 3wz € L2. x = waw2 }

e et L1 = {ab,ba } and L> = { aa, bb }. What
1S L1L.27?

Answer at
https://cs103.stanford.edu/pollev



https://cs103.stanford.edu/pollev

Concatenation Example

eletX={a b, .. z A B, ... Z} and consider
these languages over X:

* Noun = { Puppy, Rainbow, Whale, ... }
 Verb = { Hugs, Juggles, Loves, ... }
e The = { The }

 The language TheNounVerbTheNoun is

 { ThePuppyHugsTheWhale,
TheWhaleLovesTheRainbow,
TheRainbowJugglesTheRainbow, ... }



Concatenation

 The concatenation of two languages L
and Lz over the alphabet X is the language

Lilz = { x| 3w1 € L1. 3wz € L2. x = wawz }

 Two views of LiL.>:

 The set of all strings that can be made by
concatenating a string in L1 with a string in Lo.

* The set of strings that can be split into two
pieces: a piece from Li1 and a piece from Lo.

» Theorem: If L1 and L2 are regular
languages, then so is Lil..



{ w € {a, b}* | w has odd length }
(S

L=
L>={w € {a, b}* | whas length exactly three }

Construct an NFA for LiLo.



2

“(): 0

DFA for La

{ w € {a, b}* | w has odd length }
(S

L=
L>={w € {a, b}* | whas length exactly three }

Construct an NFA for LiLo.



2

DFA for L1 NFA for L2
L= {we€ {a, b}*| whas odd length }
L>={w € {a, b}* | whas length exactly three }

Construct an NFA for LiLo.



=Qio [ 0000

DFA for L1 NFA for L2
L= {we€ {a, b}*| whas odd length }
L>={w € {a, b}* | whas length exactly three }

Construct an NFA for LiLo.



2
=Q:0 { 0000

DFA for L1 NFA for L2
L= {we€ {a, b}*| whas odd length }
L>={w € {a, b}* | whas length exactly three }

Construct an NFA for LiLo.



2
=Q:0 { 0000

DFA for L1 NFA for L2
d d 4 d
L= {we€ {a, b}*| whas odd length }
L>={w € {a, b}* | whas length exactly three }

Construct an NFA for LiLo.



2
=Q:0 { 0000

DFA for L1 NFA for L2
d d 4 d
L= {we€ {a, b}*| whas odd length }
L>={w € {a, b}* | whas length exactly three }

Construct an NFA for LiLo.



2
=Q:0 | 0000

DFA for La NFA for L2

d d 4 d

4

{ w € {a, b}* | w has odd length }
(S

L=
L>={w € {a, b}* | whas length exactly three }

Construct an NFA for LiLo.



2
=Q:0 { 0000

DFA for La NFA for L2

d d 4 d

4

{ w € {a, b}* | w has odd length }
(S

L=
L>={w € {a, b}* | whas length exactly three }

Construct an NFA for LiLo.



2
=Q:0 | 0000

DFA for La NFA for L2

d d 4 d

4

{ w € {a, b}* | w has odd length }
(S

L=
L>={w € {a, b}* | whas length exactly three }

Construct an NFA for LiLo.



2
=Q:0 | 0000

DFA for La NFA for L2

d d 4 d

4

{ w € {a, b}* | w has odd length }
(S

L=
L>={w € {a, b}* | whas length exactly three }

Construct an NFA for LiLo.



2
=Q:0 | 0000

DFA for La NFA for L2

d d 4 d

4

{ w € {a, b}* | w has odd length }
(S

L=
L>={w € {a, b}* | whas length exactly three }

Construct an NFA for LiLo.



2
=Q:0 | 0000

DFA for La NFA for L2

d d 4 d

4

{ w € {a, b}* | w has odd length }
(S

L=
L>={w € {a, b}* | whas length exactly three }

Construct an NFA for LiLo.



2
=Q:0{ 0000

DFA for L1 NFA for L2
d d 4 d
L= {we€ {a, b}*| whas odd length }
L>={w € {a, b}* | whas length exactly three }

Construct an NFA for LiLo.



2
=Q:0 | 0000

DFA for La NFA for L2

{ w € {a, b}* | w has odd length }
(S

L=
L>={w € {a, b}* | whas length exactly three }

Construct an NFA for LiLo.



2
=Q:0 | 0000

DFA for La NFA for L2

{ w € {a, b}* | w has odd length }
(S

L=
L>={w € {a, b}* | whas length exactly three }

Construct an NFA for LiLo.



2

OROROA®

DFA for L NFA for L-
a b ab aob
L= {we€ {a, b}*| whas odd length }
L>={w € {a, b}* | whas length exactly three }

Construct an NFA for LiLo.



2

OROROA®

DFA for L NFA for L-
a b ab aob
L= {we€ {a, b}*| whas odd length }
L>={w € {a, b}* | whas length exactly three }

Construct an NFA for LiLo.



2
=Q:0 | 0000

DFA for La NFA for L2

a b ab a b

4

{ w € {a, b}* | w has odd length }
(S

L=
L>={w € {a, b}* | whas length exactly three }

Construct an NFA for LiLo.



2
=Q:0 { 0000

DFA for La NFA for L2

a b ab a b

4

{ w € {a, b}* | w has odd length }
(S

L=
L>={w € {a, b}* | whas length exactly three }

Construct an NFA for LiLo.



2
=Q:0 | 0000

DFA for La NFA for L2

a b ab a b

4

{ w € {a, b}* | w has odd length }
(S

L=
L>={w € {a, b}* | whas length exactly three }

Construct an NFA for LiLo.



2
=Q:0 | 0000

DFA for La NFA for L2

a b ab a b

4

{ w € {a, b}* | w has odd length }
(S

L=
L>={w € {a, b}* | whas length exactly three }

Construct an NFA for LiLo.



2
=Q:0 | 0000

DFA for La NFA for L2

a b ab a b

4

{ w € {a, b}* | w has odd length }
(S

L=
L>={w € {a, b}* | whas length exactly three }

Construct an NFA for LiLo.



2
=Q:0 | 0000

DFA for La NFA for L2

a b ab a b

4

{ w € {a, b}* | w has odd length }
(S

L=
L>={w € {a, b}* | whas length exactly three }

Construct an NFA for LiLo.



2
=Q:0 | 0000

DFA for La NFA for L2

{ w € {a, b}* | w has odd length }
(S

L=
L>={w € {a, b}* | whas length exactly three }

Construct an NFA for LiLo.



Numbers

* Suppose we successfully build a finite
automaton that checks if a string is a
numbers.

* Now, we want to make a new automaton
that checks if a string consists of a series
of numbers.

 Perhaps we’re parsing a data file, for
example.

e Do we have to start from scratch? Or
could we reuse what we have?



The Kleene Star



[.ots and Lots of Concatenation

 Consider the language L = { aa, b }

« LI is the set of strings formed by concatenating pairs of
strings in L.

{ aaaa, aab, baa, bb }

 LLL is the set of strings formed by concatenating triples
of strings in L.

{ aaaaaa, aaaab, aabaa, aabb, baaaa, baab, bbaa, bbb}

« LLLL is the set of strings formed by concatenating
quadruples of strings in L.

{ aaaaaaaa, aaaaaab, aaaabaa, aaaabb, aabaaaa,

aabaab, aabbaa, aabbb, baaaaaa, baaaab, baabaa,
baabb, bbaaaa, bbaab, bbbaa, bbbb}



Language Exponentiation

 We can define what it means to “exponentiate” a
language as follows:

* LY = 1€}

 Intuition: The only string you can form by gluing no
strings together is the empty string.

 Notice that {e} # 4. Can you explain why?
o Ln+1 = [.I"

« Idea: Concatenating (n+1) strings together works by
concatenating n strings, then concatenating one more.

* Question to ponder: Why define L° = {€}?
* Question to ponder: What is 9°?



The Kleene Closure

 An important operation on languages is the
Kleene closure, or Kleene star, which is
defined as

IL*={weX2* | dn e N.welL"}
 Mathematically:
wWEeEIL* o dn € N.w € L™

* Intuitively, L* is the language all possible
ways of concatenating zero or more strings in
L together, possibly with repetition.

* Question to ponder: What is 0*?



The Kleene Closure

IfL ={a, bb}, then L* = {
E,
a, bb,
aa, abb, bba, bbbb,
aaa, aabb, abba, abbbb, bbaa, bbabb, bbbba, bbbbbb,

Think of L* as The set of sfrings you
can make if you have a collection of
sfamps - one for each string in L -
and you torm every possible sfring
that can be made from those stamps,




Theorem: If L is a regular language, so is L*.



L ={we{a b}*| whas an odd number of a’s and
an even number of b’s }

Construct an NFA for L*.



sm;Q @
@

DFA for L

L ={we{a b}*| whas an odd number of a’s and
an even number of b’s }

Construct an NFA for L*.



d
star star
O
b b

O

b b

o

O

DFA for L

L ={we{a b}*| whas an odd number of a’s and
an even number of b’s }

Construct an NFA for L*.



star O €

ORR Ol
@

DFA for L

L ={we{a b}*| whas an odd number of a’s and
an even number of b’s }

Construct an NFA for L*.



d
star (3
O« -0
b b b b
d
Q- 0O
DFA for L

a b b ab ab ab aob

L ={we{a b}*| whas an odd number of a’s and
an even number of b’s }

Construct an NFA for L*.



“O Q.0
Q0

DFA for L

a b a b a|lb a b

L ={we{a b}*| whas an odd number of a’s and
an even number of b’s }

Construct an NFA for L*.



“O Q.0
Q0

DFA for L

a b b

2

a b a b a|lb a b

L ={we{a b}*| whas an odd number of a’s and
an even number of b’s }

Construct an NFA for L*.



“@ Q.0
Q0

DFA for L

a b b

2

a b a b a|lb a b

L ={we{a b}*| whas an odd number of a’s and
an even number of b’s }

Construct an NFA for L*.



“O " Q.0
Q0

DFA for L

a b b

2

a b a b a|lb a b

L ={we{a b}*| whas an odd number of a’s and
an even number of b’s }

Construct an NFA for L*.



d
star (3
O« (-0
b b b b
d
Q- 0O
DFA for L

b a b a

b a b

L ={we{a b}*| whas an odd number of a’s and
an even number of b’s }

Construct an NFA for L*.



“O Q.0
Q0

DFA for L

a b b

4

a b a b a|lb a b

L ={we{a b}*| whas an odd number of a’s and
an even number of b’s }

Construct an NFA for L*.



“O Q.0
Q0

DFA for L

a b bla b a b alJb a b

4

L ={we{a b}*| whas an odd number of a’s and
an even number of b’s }

Construct an NFA for L*.



“@ Q.0
Q0

DFA for L

a b bla b a b alJb a b

4

L ={we{a b}*| whas an odd number of a’s and
an even number of b’s }

Construct an NFA for L*.



“O " Q.0
Q0

DFA for L

a b bla b a b alJb a b

4

L ={we{a b}*| whas an odd number of a’s and
an even number of b’s }

Construct an NFA for L*.



“O Q.0
Q0

DFA for L

a b bla b a b alJb a b

2

L ={we{a b}*| whas an odd number of a’s and
an even number of b’s }

Construct an NFA for L*.



“O Q.0

b b b b
d
Q- 0O

DFA for L

a b a b a|lb a b

2

L ={we{a b}*| whas an odd number of a’s and
an even number of b’s }

Construct an NFA for L*.



“O Q.0
Q:0

DFA for L

a b a b a|lb a b

2

L ={we{a b}*| whas an odd number of a’s and
an even number of b’s }

Construct an NFA for L*.



“O " Q.0
Q0

DFA for L

a b a b a|lb a b

4

L ={we{a b}*| whas an odd number of a’s and
an even number of b’s }

Construct an NFA for L*.



star O £ Q
Q

DFA for L

a b a

b

d

b

d

4

L ={we{a b}*| whas an odd number of a’s and

an even number of b’s }
Construct an NFA for L*.




star O £ Q
Q

DFA for L

a b a

b

d

b

d

4

L ={we{a b}*| whas an odd number of a’s and

an even number of b’s }
Construct an NFA for L*.




star O £ Q
Q

DFA for L

a b a

b

d

b

d

4

L ={we{a b}*| whas an odd number of a’s and

an even number of b’s }
Construct an NFA for L*.




star O £ Q
Q

DFA for L

a b a

b

d

b

d

b

2

L ={we{a b}*| whas an odd number of a’s and
an even number of b’s }

Construct an NFA for L*.




“O Q.0
Q0

DFA for L

b a b

2

a b a b a

L ={we{a b}*| whas an odd number of a’s and
an even number of b’s }

Construct an NFA for L*.



“O Q.0
Q0

DFA for L

a b a b a|lb a b

L ={we{a b}*| whas an odd number of a’s and
an even number of b’s }

Construct an NFA for L*.



a
star E

O« (-0

Question: Why add the new

sfate out front? Why not C
jusT make the old start < '2 a Z >

stale accepting?

DFA for L

a b a b a|lb a b

L ={we{a b}*| whas an odd number of a’s and
an even number of b’s }

Construct an NFA for L*.



Closure Properties

« Theorem: If L1 and L2 are regular
languages over an alphabet %, then so
are the following languages:

e [1 U L>
e JaiN Lo
e J1l>
° Ll*
» These are some of the closure
properties of the regular languages.



Next Time

* Regular Expressions

* Building languages from the ground up!
« Thompson’s Algorithm

A UNIX Programmer in Theoryland.
 Kleene’s Theorem

 From machines to programs!



	Slide 1
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 207
	Slide 208
	Slide 209
	Slide 210
	Slide 211
	Slide 212
	Slide 213
	Slide 214
	Slide 215
	Slide 216
	Slide 217
	Slide 218
	Slide 219
	Slide 220
	Slide 221
	Slide 222
	Slide 223
	Slide 224
	Slide 225
	Slide 226
	Slide 227
	Slide 228
	Slide 229
	Slide 230
	Slide 231
	Slide 232
	Slide 233
	Slide 234

