

Lecture 16:
Finite Automata

CS103CS103

Winter 2025Winter 2025

Part 3 of 3

Recap from Last TIme

NFAs
● An NFA is a

● Nondeterministic
● Finite
● Automaton

● NFAs have no
restrictions on how
many transitions are
allowed per state.

● They can also use ε-
transitions.

● An NFA accepts a
string w if there is
some sequence of
choices that leads to
an accepting state.

q0 q1

q4 q5

q2

q0q3

q0
start q1

q4 q5

q2

q3

a

ε

a

b

b, ε b

a

ε

q4

Massive Parallelism
● An NFA can be thought of as a DFA that

can be in many states at once.
● At each point in time, when the NFA

needs to follow a transition, it tries all
the options at the same time.

● The NFA accepts if any of the states that
are active at the end are accepting
states. It rejects otherwise.

New Stuff!

Just how powerful are NFAs?

NFAs and DFAs
● Any language that can be accepted by a

DFA can be accepted by an NFA.
● Why?

● Every DFA essentially already is an NFA!
● Question: Can any language accepted by

an NFA also be accepted by a DFA?
● Surprisingly, the answer is yes!

Thought Experiment:
How would you simulate an NFA in

software?

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

a b a ab

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

a b a ab

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

a b a ab

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

a b a ab

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

a b a ab

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

a b a ab

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

a b a ab

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

a b a ab

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

a b a ab

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

a b a ab

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

a b a ab

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

a b a ab

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

a b a ab

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

a b a ab

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

a? ?? ?… ? ? ? …?

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

a? ?? ?… ? ? ? …?

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

a? ?? ?… ? ? ? …?

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

a? ?? ?… ? ? ? …?

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

a? ?? ?… ? ? ? …?

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

a? ?? ?… ? ? ? …?

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

a? ?? ?… ? ? ? …?

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
b

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
b

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
b

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
b

{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
b

{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
b

{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁}

b
{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁}

b
{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁}

b
{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁}

b
{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁}

b
{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁}

b
{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁}

b
{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}

b
{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}

b
{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}

b
{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}

b
{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}

b
{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}

b
{q₀}

{q₀, q₂}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}

b
{q₀}

{q₀, q₂}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}
{q₀, q₂}

b
{q₀}

{q₀, q₂}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}
{q₀, q₂}

b
{q₀}

{q₀, q₂}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}
{q₀, q₂}

b
{q₀}

{q₀, q₂}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}
{q₀, q₂}

b
{q₀}

{q₀, q₂}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}
{q₀, q₂}

b
{q₀}

{q₀, q₂}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}
{q₀, q₂}

b
{q₀}

{q₀, q₂}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}
{q₀, q₂} {q₀, q₁, q₃}

b
{q₀}

{q₀, q₂}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}
{q₀, q₂} {q₀, q₁, q₃}

b
{q₀}

{q₀, q₂}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}
{q₀, q₂} {q₀, q₁, q₃}

b
{q₀}

{q₀, q₂}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}
{q₀, q₂} {q₀, q₁, q₃}

b
{q₀}

{q₀, q₂}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}
{q₀, q₂} {q₀, q₁, q₃}

b
{q₀}

{q₀, q₂}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}
{q₀, q₂} {q₀, q₁, q₃}

b
{q₀}

{q₀, q₂}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}
{q₀, q₂} {q₀, q₁, q₃}

b
{q₀}

{q₀, q₂}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}
{q₀, q₂} {q₀, q₁, q₃}

b
{q₀}

{q₀, q₂}
{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}
{q₀, q₂} {q₀, q₁, q₃}

b
{q₀}

{q₀, q₂}
{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}
{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃}

b
{q₀}

{q₀, q₂}
{q₀}

Fill in this row.

Answer at
https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}
{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃}

b
{q₀}

{q₀, q₂}
{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}
{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃}

b
{q₀}

{q₀, q₂}
{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}
{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃}

b
{q₀}

{q₀, q₂}
{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}
{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃}

b
{q₀}

{q₀, q₂}
{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}
{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃}

b
{q₀}

{q₀, q₂}
{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}
{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃}

b
{q₀}

{q₀, q₂}
{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}
{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃} {q₀, q₁}

b
{q₀}

{q₀, q₂}
{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}
{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃} {q₀, q₁}

b
{q₀}

{q₀, q₂}
{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}
{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃} {q₀, q₁}

b
{q₀}

{q₀, q₂}
{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}
{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃} {q₀, q₁}

b
{q₀}

{q₀, q₂}
{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}
{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃} {q₀, q₁}

b
{q₀}

{q₀, q₂}
{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}
{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃} {q₀, q₁}

b
{q₀}

{q₀, q₂}
{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}
{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃} {q₀, q₁}

b
{q₀}

{q₀, q₂}
{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}
{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃} {q₀, q₁}

b
{q₀}

{q₀, q₂}
{q₀}

{q₀, q₂}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}
{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃} {q₀, q₁}

b
{q₀}

{q₀, q₂}
{q₀}

{q₀, q₂}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀} {q₀, q₁}

{q₀, q₂}

b

a

 b
a

 b

b

 a

start

{q₀, q₁, q₃}

a

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}
{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃} {q₀, q₁}

b
{q₀}

{q₀, q₂}
{q₀}

{q₀, q₂}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀} {q₀, q₁}

{q₀, q₂}

b

a

 b
a

 b

b

 a

start

{q₀, q₁, q₃}

a

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}
{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃} {q₀, q₁}

b
{q₀}

{q₀, q₂}
{q₀}

{q₀, q₂}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀} {q₀, q₁}

{q₀, q₂}

b

a

 b
a

 b

b

 a

start

{q₀, q₁, q₃}

a

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}
{q₀, q₂} {q₀, q₁, q₃}

*{q₀, q₁, q₃} {q₀, q₁}

b
{q₀}

{q₀, q₂}
{q₀}

{q₀, q₂}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀} {q₀, q₁}

{q₀, q₂}

b

a

 b
a

 b

b

 a

start

{q₀, q₁, q₃}

a

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}
{q₀, q₂} {q₀, q₁, q₃}

*{q₀, q₁, q₃} {q₀, q₁}

b
{q₀}

{q₀, q₂}
{q₀}

{q₀, q₂}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀} {q₀, q₁}

{q₀, q₂}

b

a

 b
a

 b

b

 a

start

{q₀, q₁, q₃}

a

{q₀}
a

{q₀, q₁}
{q₀, q₁} {q₀, q₁}
{q₀, q₂} {q₀, q₁, q₃}

*{q₀, q₁, q₃} {q₀, q₁}

b
{q₀}

{q₀, q₂}
{q₀}

{q₀, q₂}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀} {q₀, q₁}

{q₀, q₂}

b

a

 b
a

 b

b

 a

start

{q₀, q₁, q₃}

a

a b a a b a

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀} {q₀, q₁}

{q₀, q₂}

b

a

 b
a

 b

b

 a

start

{q₀, q₁, q₃}

a

a b a a b a

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀} {q₀, q₁}

{q₀, q₂}

b

a

 b
a

 b

b

 a

start

{q₀, q₁, q₃}

a

a b a a b a

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀} {q₀, q₁}

{q₀, q₂}

b

a

 b
a

 b

b

 a

start

{q₀, q₁, q₃}

a

a b a a b a

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀} {q₀, q₁}

{q₀, q₂}

b

a

 b
a

 b

b

 a

start

{q₀, q₁, q₃}

a

a b a a b a

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀} {q₀, q₁}

{q₀, q₂}

b

a

 b
a

 b

b

 a

start

{q₀, q₁, q₃}

a

a b a a b a

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀} {q₀, q₁}

{q₀, q₂}

b

a

 b
a

 b

b

 a

start

{q₀, q₁, q₃}

a

a b a a b a

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀} {q₀, q₁}

{q₀, q₂}

b

a

 b
a

 b

b

 a

start

{q₀, q₁, q₃}

a

a b a a b a

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀} {q₀, q₁}

{q₀, q₂}

b

a

 b
a

 b

b

 a

start

{q₀, q₁, q₃}

a

a b a a b a

The Subset Construction
● This procedure for turning an NFA for a language L into a

DFA for a language L is called the subset construction.
● It’s sometimes called the powerset construction; it’s different

names for the same thing!
● Intuitively:

● Each state in the DFA corresponds to a set of states from the NFA.
● Each transition in the DFA corresponds to what transitions would

be taken in the NFA when using the massive parallel intuition.
● The accepting states in the DFA correspond to which sets of states

would be considered accepting in the NFA when using the massive
parallel intuition.

● There’s an online Guide to the Subset Construction with
a more elaborate example involving ε-transitions and cases
where the NFA dies; check that for more details.

The Subset Construction
● In converting an NFA to a DFA, the DFA's

states correspond to sets of NFA states.
● Useful fact: |℘(S)| = 2|S| for any finite set S.
● In the worst-case, the construction can

result in a DFA that is exponentially larger
than the original NFA.

● Question to ponder: Can you find a family
of languages that have NFAs of size n, but
no DFAs of size less than 2n?

Regular Languages
● A language L is called regular when there’s

a DFA D that recognizes L (that is, (ℒ D) = L).
● Theorem: A language L is regular if and

only if there’s an NFA N that recognizes it
(that is, (ℒ N) = L).

● This fact makes it possible to explore regular
languages by considering either DFAs or
NFAs.

Time-Out for Announcements!

Please see Sean’s post on Ed
for today’s announcements.

Back to CS103!

Motivating Example: Numbers

Numbers
● Numbers can be written in many ways:

2718
2,718

2.718 × 103

MMDCCXVIII
二千七百一十八

ח" ב׳תשי
໒໗໑໘
ՍՉԺԸ

etc.
● How would we design a DFA or NFA that checks if a

particular string is a number in some numeral system?

Numbers
● Numbers can be written in many ways:

2718
2,718

2.718 × 103

MMDCCXVIII
二千七百一十八

ח" ב׳תשי
໒໗໑໘
ՍՉԺԸ

etc.
● How would we design a DFA or NFA that checks if a

particular string is a number in some numeral system?

 Σ
1, 2, …, 9

0

Σ

start

 Σ

Numbers
● Numbers can be written in many ways:

2718
2,718

2.718 × 103

MMDCCXVIII
二千七百一十八

ח" ב׳תשי
໒໗໑໘
ՍՉԺԸ

etc.
● How would we design a DFA or NFA that checks if a

particular string is a number in some numeral system?

0start

,

0, …, 90, …, 90, …, 9

1, …, 9 1, …, 9 1, …, 9

Practical Question: If we can build a
bunch of finite automata that all recognize

certain patterns, can we build a single
finite automaton that recognizes all of

those patterns?

Closure Under Union
● If L₁ and L₂ are languages over the alphabet Σ, the

language L₁ ∪ L₂ is the language of all strings in
at least one of the two languages.

● Intuitively, if L₁ and L₂ correspond to languages of
strings with one of two different patterns, then
L₁ ∪ L₂ is the language of strings with at least one
of those patterns.

● Theorem: If L₁ and L₂ are regular, so is L₁ ∪ L₂.

L₁ = { w ∈ {a, b}* | w has even length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁ ∪ L₂.

L₁ = { w ∈ {a, b}* | w has even length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁ ∪ L₂.

Σ

Σ
start

DFA for L₁

L₁ = { w ∈ {a, b}* | w has even length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁ ∪ L₂.

Σ

Σ
start

start Σ Σ Σ

DFA for L₁

NFA for L₂

L₁ = { w ∈ {a, b}* | w has even length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁ ∪ L₂.

Σ

Σ
start

start Σ Σ Σ

DFA for L₁

NFA for L₂

start

L₁ = { w ∈ {a, b}* | w has even length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁ ∪ L₂.

Σ

Σ

Σ Σ Σ

DFA for L₁

NFA for L₂

start

ε

ε

L₁ = { w ∈ {a, b}* | w has even length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁ ∪ L₂.

Σ

Σ

Σ Σ Σ

DFA for L₁

NFA for L₂

start

ε

ε

a b a b a b

L₁ = { w ∈ {a, b}* | w has even length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁ ∪ L₂.

Σ

Σ

Σ Σ Σ

DFA for L₁

NFA for L₂

start

ε

ε

a b a b a b

L₁ = { w ∈ {a, b}* | w has even length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁ ∪ L₂.

Σ

Σ

Σ Σ Σ

DFA for L₁

NFA for L₂

start

ε

ε

a b a b a b

L₁ = { w ∈ {a, b}* | w has even length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁ ∪ L₂.

Σ

Σ

Σ Σ Σ

DFA for L₁

NFA for L₂

start

ε

ε

a b a b a b

L₁ = { w ∈ {a, b}* | w has even length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁ ∪ L₂.

Σ

Σ

Σ Σ Σ

DFA for L₁

NFA for L₂

start

ε

ε

a b a b a b

L₁ = { w ∈ {a, b}* | w has even length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁ ∪ L₂.

Σ

Σ

Σ Σ Σ

DFA for L₁

NFA for L₂

start

ε

ε

a b a b a b

L₁ = { w ∈ {a, b}* | w has even length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁ ∪ L₂.

Σ

Σ

Σ Σ Σ

DFA for L₁

NFA for L₂

start

ε

ε

a b a b a b

L₁ = { w ∈ {a, b}* | w has even length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁ ∪ L₂.

Σ

Σ

Σ Σ Σ

DFA for L₁

NFA for L₂

start

ε

ε

a b a b a b

L₁ = { w ∈ {a, b}* | w has even length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁ ∪ L₂.

Σ

Σ

Σ Σ Σ

DFA for L₁

NFA for L₂

start

ε

ε

a b a b a b

L₁ = { w ∈ {a, b}* | w has even length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁ ∪ L₂.

Σ

Σ

Σ Σ Σ

DFA for L₁

NFA for L₂

start

ε

ε

a b a b a b

L₁ = { w ∈ {a, b}* | w has even length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁ ∪ L₂.

Σ

Σ

Σ Σ Σ

DFA for L₁

NFA for L₂

start

ε

ε

a b a b a b

L₁ = { w ∈ {a, b}* | w has even length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁ ∪ L₂.

Σ

Σ

Σ Σ Σ

DFA for L₁

NFA for L₂

start

ε

ε

L₁ = { w ∈ {a, b}* | w has even length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁ ∪ L₂.

Σ

Σ

Σ Σ Σ

DFA for L₁

NFA for L₂

start

ε

ε

b a a

L₁ = { w ∈ {a, b}* | w has even length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁ ∪ L₂.

Σ

Σ

Σ Σ Σ

DFA for L₁

NFA for L₂

start

ε

ε

b a a

L₁ = { w ∈ {a, b}* | w has even length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁ ∪ L₂.

Σ

Σ

Σ Σ Σ

DFA for L₁

NFA for L₂

start

ε

ε

b a a

L₁ = { w ∈ {a, b}* | w has even length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁ ∪ L₂.

Σ

Σ

Σ Σ Σ

DFA for L₁

NFA for L₂

start

ε

ε

b a a

L₁ = { w ∈ {a, b}* | w has even length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁ ∪ L₂.

Σ

Σ

Σ Σ Σ

DFA for L₁

NFA for L₂

start

ε

ε

b a a

L₁ = { w ∈ {a, b}* | w has even length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁ ∪ L₂.

Σ

Σ

Σ Σ Σ

DFA for L₁

NFA for L₂

start

ε

ε

b a a

L₁ = { w ∈ {a, b}* | w has even length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁ ∪ L₂.

Σ

Σ

Σ Σ Σ

DFA for L₁

NFA for L₂

start

ε

ε

b a a

Closure Under Intersection
● If L₁ and L₂ are languages over Σ, then L₁ ∩ L₂ is the

language of strings in both L₁ and L₂.
● Intuitively, L₁ ∩ L₂ is the set of strings meeting the

requirements of each language.
● Theorem: If L₁ and L₂ are regular, so is L₁ ∩ L₂.

● If L₁ and L₂ are languages over Σ, then L₁ ∩ L₂ is the
language of strings in both L₁ and L₂.

● Intuitively, L₁ ∩ L₂ is the set of strings meeting the
requirements of each language.

● Theorem: If L₁ and L₂ are regular, so is L₁ ∩ L₂.

L1

Closure Under Intersection

L2

 L1 L2

Closure Under Intersection
● If L₁ and L₂ are languages over Σ, then L₁ ∩ L₂ is the

language of strings in both L₁ and L₂.
● Intuitively, L₁ ∩ L₂ is the set of strings meeting the

requirements of each language.
● Theorem: If L₁ and L₂ are regular, so is L₁ ∩ L₂.

 L1 ∪ L2

Closure Under Intersection
● If L₁ and L₂ are languages over Σ, then L₁ ∩ L₂ is the

language of strings in both L₁ and L₂.
● Intuitively, L₁ ∩ L₂ is the set of strings meeting the

requirements of each language.
● Theorem: If L₁ and L₂ are regular, so is L₁ ∩ L₂.

 L1 ∪ L2

Closure Under Intersection
● If L₁ and L₂ are languages over Σ, then L₁ ∩ L₂ is the

language of strings in both L₁ and L₂.
● Intuitively, L₁ ∩ L₂ is the set of strings meeting the

requirements of each language.
● Theorem: If L₁ and L₂ are regular, so is L₁ ∩ L₂.

Hey, it's De
Morgan's laws!

Concatenation

Numbers
● Numbers can be written in many ways:

2718
2,718

2.718 × 103

MMDCCXVIII
二千七百一十八

ח" ב׳תשי
໒໗໑໘
ՍՉԺԸ

etc.
● How would we design a DFA or NFA that checks if a

particular string is a number in some numeral system?

Numbers
● Numbers can be written in many ways:

2718
2,718

2.718 × 103

MMDCCXVIII
二千七百一十八

ח" ב׳תשי
໒໗໑໘
ՍՉԺԸ

etc.
● How would we design a DFA or NFA that checks if a

particular string is a number in some numeral system?

Numbers
● Numbers can be written in many ways:

2718
2,718

2.718 × 103

MMDCCXVIII
二千七百一十八

ח" ב׳תשי
໒໗໑໘
ՍՉԺԸ

etc.
● How would we design a DFA or NFA that checks if a

particular string is a number in some numeral system?

0, …, 9start
.

0, …, 9

0, …, 9

 0, …, 9
–

×
start

1 0 ¹, …, ⁹

–

 ¹, …, ⁹

 ⁰, …, ⁹

Question: If you can build finite automata
to match the first and second halves of a

pattern, can you build a single finite
automaton that matches the full pattern?

String Concatenation
● If w ∈ Σ* and x ∈ Σ*, the concatenation of w and x,

denoted wx, is the string formed by tacking all the
characters of x onto the end of w.

● Example: if w = quo and x = kka, the concatenation
wx = quokka.

● This is analogous to the + operator for strings in many
programming languages.

● Some facts about concatenation:
● The empty string ε is the identity element for concatenation:

wε = εw = w
● Concatenation is associative:

wxy = w(xy) = (wx)y

Concatenation
● The concatenation of two languages L₁ and

L₂ over the alphabet Σ is the language
L₁L₂ = { x | ∃w₁ ∈ L₁. ∃w₂ ∈ L₂. x = w₁w₂ }

● Let L₁ = { ab, ba } and L₂ = { aa, bb }. What
is L₁L₂?

Answer at
https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev

Concatenation Example
● Let Σ = { a, b, …, z, A, B, …, Z } and consider

these languages over Σ:
● Noun = { Puppy, Rainbow, Whale, … }
● Verb = { Hugs, Juggles, Loves, … }
● The = { The }

● The language TheNounVerbTheNoun is
● { ThePuppyHugsTheWhale,

 TheWhaleLovesTheRainbow,
 TheRainbowJugglesTheRainbow, … }

Concatenation
● The concatenation of two languages L₁

and L₂ over the alphabet Σ is the language
L₁L₂ = { x | ∃w₁ ∈ L₁. ∃w₂ ∈ L₂. x = w₁w₂ }

● Two views of L₁L₂:
● The set of all strings that can be made by

concatenating a string in L₁ with a string in L₂.
● The set of strings that can be split into two

pieces: a piece from L₁ and a piece from L₂.
● Theorem: If L₁ and L₂ are regular

languages, then so is L₁L₂.

L₁ = { w ∈ {a, b}* | w has odd length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁L₂.

L₁ = { w ∈ {a, b}* | w has odd length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁L₂.

Σ

Σ

DFA for L₁

start

L₁ = { w ∈ {a, b}* | w has odd length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁L₂.

Σ

Σ
Σ Σ Σ

DFA for L₁ NFA for L₂

start start

L₁ = { w ∈ {a, b}* | w has odd length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁L₂.

Σ

Σ
Σ Σ Σ

DFA for L₁ NFA for L₂

start ε

L₁ = { w ∈ {a, b}* | w has odd length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁L₂.

Σ

Σ
Σ Σ Σ

DFA for L₁ NFA for L₂

start ε

L₁ = { w ∈ {a, b}* | w has odd length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁L₂.

Σ

Σ
Σ Σ Σ

DFA for L₁ NFA for L₂

start ε

a b aa a

L₁ = { w ∈ {a, b}* | w has odd length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁L₂.

Σ

Σ
Σ Σ Σ

DFA for L₁ NFA for L₂

start ε

a b aa a

L₁ = { w ∈ {a, b}* | w has odd length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁L₂.

Σ

Σ
Σ Σ Σ

DFA for L₁ NFA for L₂

start ε

a b aa a

L₁ = { w ∈ {a, b}* | w has odd length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁L₂.

Σ

Σ
Σ Σ Σ

DFA for L₁ NFA for L₂

start ε

a b aa a

L₁ = { w ∈ {a, b}* | w has odd length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁L₂.

Σ

Σ
Σ Σ Σ

DFA for L₁ NFA for L₂

start ε

a b aa a

L₁ = { w ∈ {a, b}* | w has odd length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁L₂.

Σ

Σ
Σ Σ Σ

DFA for L₁ NFA for L₂

start ε

a b aa a

L₁ = { w ∈ {a, b}* | w has odd length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁L₂.

Σ

Σ
Σ Σ Σ

DFA for L₁ NFA for L₂

start ε

a b aa a

L₁ = { w ∈ {a, b}* | w has odd length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁L₂.

Σ

Σ
Σ Σ Σ

DFA for L₁ NFA for L₂

start ε

a b aa a

L₁ = { w ∈ {a, b}* | w has odd length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁L₂.

Σ

Σ
Σ Σ Σ

DFA for L₁ NFA for L₂

start ε

a b aa a

L₁ = { w ∈ {a, b}* | w has odd length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁L₂.

Σ

Σ
Σ Σ Σ

DFA for L₁ NFA for L₂

start ε

b b ba aa b

L₁ = { w ∈ {a, b}* | w has odd length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁L₂.

Σ

Σ
Σ Σ Σ

DFA for L₁ NFA for L₂

start ε

b b ba aa b

L₁ = { w ∈ {a, b}* | w has odd length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁L₂.

Σ

Σ
Σ Σ Σ

DFA for L₁ NFA for L₂

start ε

b b ba aa b

L₁ = { w ∈ {a, b}* | w has odd length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁L₂.

Σ

Σ
Σ Σ Σ

DFA for L₁ NFA for L₂

start ε

b b ba aa b

L₁ = { w ∈ {a, b}* | w has odd length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁L₂.

Σ

Σ
Σ Σ Σ

DFA for L₁ NFA for L₂

start ε

b b ba aa b

L₁ = { w ∈ {a, b}* | w has odd length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁L₂.

Σ

Σ
Σ Σ Σ

DFA for L₁ NFA for L₂

start ε

b b ba aa b

L₁ = { w ∈ {a, b}* | w has odd length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁L₂.

Σ

Σ
Σ Σ Σ

DFA for L₁ NFA for L₂

start ε

b b ba aa b

L₁ = { w ∈ {a, b}* | w has odd length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁L₂.

Σ

Σ
Σ Σ Σ

DFA for L₁ NFA for L₂

start ε

b b ba aa b

L₁ = { w ∈ {a, b}* | w has odd length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁L₂.

Σ

Σ
Σ Σ Σ

DFA for L₁ NFA for L₂

start ε

b b ba aa b

L₁ = { w ∈ {a, b}* | w has odd length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁L₂.

Σ

Σ
Σ Σ Σ

DFA for L₁ NFA for L₂

start ε

b b ba aa b

L₁ = { w ∈ {a, b}* | w has odd length }
L₂ = { w ∈ {a, b}* | w has length exactly three }

Construct an NFA for L₁L₂.

Σ

Σ
Σ Σ Σ

DFA for L₁ NFA for L₂

start ε

b b ba aa b

Numbers
● Suppose we successfully build a finite

automaton that checks if a string is a
numbers.

● Now, we want to make a new automaton
that checks if a string consists of a series
of numbers.
● Perhaps we’re parsing a data file, for

example.
● Do we have to start from scratch? Or

could we reuse what we have?

The Kleene Star

Lots and Lots of Concatenation
● Consider the language L = { aa, b }
● LL is the set of strings formed by concatenating pairs of

strings in L.
{ aaaa, aab, baa, bb }

● LLL is the set of strings formed by concatenating triples
of strings in L.

{ aaaaaa, aaaab, aabaa, aabb, baaaa, baab, bbaa, bbb}
● LLLL is the set of strings formed by concatenating

quadruples of strings in L.
{ aaaaaaaa, aaaaaab, aaaabaa, aaaabb, aabaaaa,
aabaab, aabbaa, aabbb, baaaaaa, baaaab, baabaa,

baabb, bbaaaa, bbaab, bbbaa, bbbb}

Language Exponentiation
● We can define what it means to “exponentiate” a

language as follows:
● L0 = {ε}

● Intuition: The only string you can form by gluing no
strings together is the empty string.

● Notice that {ε} ≠ Ø. Can you explain why?
● Ln+1 = LLn

● Idea: Concatenating (n+1) strings together works by
concatenating n strings, then concatenating one more.

● Question to ponder: Why define L0 = {ε}?
● Question to ponder: What is Ø0?

The Kleene Closure
● An important operation on languages is the

Kleene closure, or Kleene star, which is
defined as

L* = { w ∈ Σ* | ∃n ∈ ℕ. w ∈ Ln }
● Mathematically:

w ∈ L* ↔ ∃n ∈ ℕ. w ∈ Ln

● Intuitively, L* is the language all possible
ways of concatenating zero or more strings in
L together, possibly with repetition.

● Question to ponder: What is Ø*?

The Kleene Closure
If L = { a, bb }, then L* = {

ε,
a, bb,

aa, abb, bba, bbbb,
aaa, aabb, abba, abbbb, bbaa, bbabb, bbbba, bbbbbb,

…
}

Think of L* as the set of strings you
can make if you have a collection of
stamps – one for each string in L –
and you form every possible string

that can be made from those stamps.

Theorem: If L is a regular language, so is L*.

L = { w ∈ {a, b}* | w has an odd number of a’s and
 an even number of b’s }

Construct an NFA for L*.

L = { w ∈ {a, b}* | w has an odd number of a’s and
 an even number of b’s }

Construct an NFA for L*.

a

a

DFA for L

start

a

a

 b b bb

L = { w ∈ {a, b}* | w has an odd number of a’s and
 an even number of b’s }

Construct an NFA for L*.

a

a

DFA for L

start

a

a

 b b bb

start

L = { w ∈ {a, b}* | w has an odd number of a’s and
 an even number of b’s }

Construct an NFA for L*.

a

a

DFA for L

a

a

 b b bb

start

ε

ε

L = { w ∈ {a, b}* | w has an odd number of a’s and
 an even number of b’s }

Construct an NFA for L*.

a

a

DFA for L

a

a

 b b bb

start

ε

ε

b b ab ba a b a b a b

L = { w ∈ {a, b}* | w has an odd number of a’s and
 an even number of b’s }

Construct an NFA for L*.

a

a

DFA for L

a

a

 b b bb

start

ε

ε

b b ab ba a b a b a b

L = { w ∈ {a, b}* | w has an odd number of a’s and
 an even number of b’s }

Construct an NFA for L*.

a

a

DFA for L

a

a

 b b bb

start

ε

ε

b b ab ba a b a b a b

L = { w ∈ {a, b}* | w has an odd number of a’s and
 an even number of b’s }

Construct an NFA for L*.

a

a

DFA for L

a

a

 b b bb

start

ε

ε

b b ab ba a b a b a b

L = { w ∈ {a, b}* | w has an odd number of a’s and
 an even number of b’s }

Construct an NFA for L*.

a

a

DFA for L

a

a

 b b bb

start

ε

ε

b b ab ba a b a b a b

L = { w ∈ {a, b}* | w has an odd number of a’s and
 an even number of b’s }

Construct an NFA for L*.

a

a

DFA for L

a

a

 b b bb

start

ε

ε

b b ab ba a b a b a b

L = { w ∈ {a, b}* | w has an odd number of a’s and
 an even number of b’s }

Construct an NFA for L*.

a

a

DFA for L

a

a

 b b bb

start

ε

ε

b b ab ba a b a b a b

L = { w ∈ {a, b}* | w has an odd number of a’s and
 an even number of b’s }

Construct an NFA for L*.

a

a

DFA for L

a

a

 b b bb

start

ε

ε

b b ab ba a b a b a b

L = { w ∈ {a, b}* | w has an odd number of a’s and
 an even number of b’s }

Construct an NFA for L*.

a

a

DFA for L

a

a

 b b bb

start

ε

ε

b b ab ba a b a b a b

L = { w ∈ {a, b}* | w has an odd number of a’s and
 an even number of b’s }

Construct an NFA for L*.

a

a

DFA for L

a

a

 b b bb

start

ε

ε

b b ab ba a b a b a b

L = { w ∈ {a, b}* | w has an odd number of a’s and
 an even number of b’s }

Construct an NFA for L*.

a

a

DFA for L

a

a

 b b bb

start

ε

ε

b b ab ba a b a b a b

L = { w ∈ {a, b}* | w has an odd number of a’s and
 an even number of b’s }

Construct an NFA for L*.

a

a

DFA for L

a

a

 b b bb

start

ε

ε

b b ab ba a b a b a b

L = { w ∈ {a, b}* | w has an odd number of a’s and
 an even number of b’s }

Construct an NFA for L*.

a

a

DFA for L

a

a

 b b bb

start

ε

ε

b b ab ba a b a b a b

L = { w ∈ {a, b}* | w has an odd number of a’s and
 an even number of b’s }

Construct an NFA for L*.

a

a

DFA for L

a

a

 b b bb

start

ε

ε

b b ab ba a b a b a b

L = { w ∈ {a, b}* | w has an odd number of a’s and
 an even number of b’s }

Construct an NFA for L*.

a

a

DFA for L

a

a

 b b bb

start

ε

ε

b b ab ba a b a b a b

L = { w ∈ {a, b}* | w has an odd number of a’s and
 an even number of b’s }

Construct an NFA for L*.

a

a

DFA for L

a

a

 b b bb

start

ε

ε

b b ab ba a b a b a b

L = { w ∈ {a, b}* | w has an odd number of a’s and
 an even number of b’s }

Construct an NFA for L*.

a

a

DFA for L

a

a

 b b bb

start

ε

ε

b b ab ba a b a b a b

L = { w ∈ {a, b}* | w has an odd number of a’s and
 an even number of b’s }

Construct an NFA for L*.

a

a

DFA for L

a

a

 b b bb

start

ε

ε

b b ab ba a b a b a b

L = { w ∈ {a, b}* | w has an odd number of a’s and
 an even number of b’s }

Construct an NFA for L*.

a

a

DFA for L

a

a

 b b bb

start

ε

ε

b b ab ba a b a b a b

L = { w ∈ {a, b}* | w has an odd number of a’s and
 an even number of b’s }

Construct an NFA for L*.

a

a

DFA for L

a

a

 b b bb

start

ε

ε

b b ab ba a b a b a b

L = { w ∈ {a, b}* | w has an odd number of a’s and
 an even number of b’s }

Construct an NFA for L*.

a

a

DFA for L

a

a

 b b bb

start

ε

ε

b b ab ba a b a b a b

Question: Why add the new
state out front? Why not
just make the old start

state accepting?

Closure Properties
● Theorem: If L₁ and L₂ are regular

languages over an alphabet Σ, then so
are the following languages:
● L₁ ∪ L₂
● L₁ ∩ L₂
● L₁L₂
● L₁*

● These are some of the closure
properties of the regular languages.

Next Time
● Regular Expressions

● Building languages from the ground up!
● Thompson’s Algorithm

● A UNIX Programmer in Theoryland.
● Kleene’s Theorem

● From machines to programs!

	Slide 1
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 207
	Slide 208
	Slide 209
	Slide 210
	Slide 211
	Slide 212
	Slide 213
	Slide 214
	Slide 215
	Slide 216
	Slide 217
	Slide 218
	Slide 219
	Slide 220
	Slide 221
	Slide 222
	Slide 223
	Slide 224
	Slide 225
	Slide 226
	Slide 227
	Slide 228
	Slide 229
	Slide 230
	Slide 231
	Slide 232
	Slide 233
	Slide 234

