Lecture 160:
Finite Automata
Part 3 of 3



Recap from Last TIme



N FASs

e An NFA is a

* Nondeterministic
 Finite
« Automaton

« NFAs have no
restrictions on how
many transitions are
allowed per state.

* They can also use &-
transitions.

* An NFA accepts a
string w if there is
some sequence of
choices that leads to
an accepting state.



Massive Parallelism

 An NFA can be thought of as a DFA that
can be in many states at once.

* At each point in time, when the NFA
needs to follow a transition, it tries all
the options at the same time.

« The NFA accepts if any of the states that
are active at the end are accepting
states. It rejects otherwise.



New Stuff!



Just how powerful are NFAsS?



NFAs and DFAs

 Any language that can be accepted by a
DFA can be accepted by an NFA.

« Why?
 Every DFA essentially already is an NFA!

* Question: Can any language accepted by
an NFA also be accepted by a DFA?

* Surprisingly, the answer is yes!



Thought Experiment:
How would you simulate an NFA in
software?
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Answer at
https://cs103.stanford.edu/pollev
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The Subset Construction

* This procedure for turning an NFA for a language L into a
DFA for a language L is called the subset construction.

« It’s sometimes called the powerset construction; it’s different
names for the same thing!
 Intuitively:
« Each state in the DFA corresponds to a set of states from the NFA.

 Each transition in the DFA corresponds to what transitions would
be taken in the NFA when using the massive parallel intuition.

 The accepting states in the DFA correspond to which sets of states
would be considered accepting in the NFA when using the massive
parallel intuition.

e There’s an online Guide to the Subset Construction with
a more elaborate example involving e-transitions and cases
where the NFA dies; check that for more details.



The Subset Construction

In converting an NFA to a DFA, the DFA's
states correspond to sets of NFA states.

Useful fact: |»(S)| = 215 for any finite set S.

In the worst-case, the construction can
result in a DFA that is exponentially larger
than the original NFA.

Question to ponder: Can you find a family
of languages that have NFAs of size n, but
no DFAs of size less than 2"?



Regular Languages

* A language L is called regular when there’s
a DFA D that recognizes L (that is, (D) = L).

« Theorem: A language L is regular if and
only if there’s an NFA N that recognizes it
(that is, £(N) = L).

» This fact makes it possible to explore regular
languages by considering either DFAs or
NFAs.



Time-Out for Announcements!



Please see Sean’s post on Ed
for today’s announcements.



Back to CS103!



Motivating Example: Numbers



Numbers

 Numbers can be written in many ways:
2718
2,718
2.718 x 103
MMDCCXVIII
s e =R pAN
N 'wna
GN9EL)

uoagnr
etc.

« How would we design a DFA or NFA that checks if a
particular string is a number in some numeral system?






Numbers

2,718




Practical Question: If we can build a
bunch of finite automata that all recognize
certain patterns, can we build a single
finite automaton that recognizes all of
those patterns?



Closure Under Union

« If L. and L2 are languages over the alphabet %, the
language L1 U L2 is the language of all strings in
at least one of the two languages.

* Intuitively, if L1 and L2 correspond to languages of
strings with one of two different patterns, then
L1 U Lz is the language of strings with at least one
of those patterns.

« Theorem: If L1 and Lz are regular, so is L1 U L.
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Closure Under Intersection

If L1 and Lz are languages over %, then L1 N Lz is the
language of strings in both L1 and L.

Intuitively, L1 N Lz is the set of strings meeting the
requirements of each language.

Theorem: If L1 and Lz are regular, so is L1 N L.

Hey, iT's De
Morgan's laws:




Concatenation



Numbers

 Numbers can be written in many ways:
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« How would we design a DFA or NFA that checks if a
particular string is a number in some numeral system?



2.718 x 103






Question: If you can build finite automata
to match the first and second halves of a
pattern, can you build a single finite
automaton that matches the full pattern?



String Concatenation

e [fw € 2* and x € X*, the concatenation of w and x,
denoted wkx, is the string formed by tacking all the
characters of x onto the end of w.

 Example: if w = quo and x = kka, the concatenation
wXx = quokka.

« This is analogous to the + operator for strings in many
programming languages.
« Some facts about concatenation:
« The empty string ¢ is the identity element for concatenation:
WE = EW =W
 Concatenation is associative:
wxy = w(xy) = (wx)y



Concatenation

 The concatenation of two languages L1 and
L2 over the alphabet X is the language

Lilz = { x| 3w1 € L1. 3wz € L2. x = waw2 }

e et L1 = {ab,ba } and L> = { aa, bb }. What
1S L1L.27?

Answer at
https://cs103.stanford.edu/pollev
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Concatenation Example

eletX={a b, .. z A B, ... Z} and consider
these languages over X:

* Noun = { Puppy, Rainbow, Whale, ... }
 Verb = { Hugs, Juggles, Loves, ... }
e The = { The }

 The language TheNounVerbTheNoun is

 { ThePuppyHugsTheWhale,
TheWhaleLovesTheRainbow,
TheRainbowJugglesTheRainbow, ... }



Concatenation

 The concatenation of two languages L
and Lz over the alphabet X is the language

Lilz = { x| 3w1 € L1. 3wz € L2. x = wawz }

 Two views of LiL.>:

 The set of all strings that can be made by
concatenating a string in L1 with a string in Lo.

* The set of strings that can be split into two
pieces: a piece from Li1 and a piece from Lo.

» Theorem: If L1 and L2 are regular
languages, then so is Lil..
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Numbers

* Suppose we successfully build a finite
automaton that checks if a string is a
numbers.

* Now, we want to make a new automaton
that checks if a string consists of a series
of numbers.

 Perhaps we’re parsing a data file, for
example.

e Do we have to start from scratch? Or
could we reuse what we have?



The Kleene Star



[.ots and Lots of Concatenation

 Consider the language L = { aa, b }

« LI is the set of strings formed by concatenating pairs of
strings in L.

{ aaaa, aab, baa, bb }

 LLL is the set of strings formed by concatenating triples
of strings in L.

{ aaaaaa, aaaab, aabaa, aabb, baaaa, baab, bbaa, bbb}

« LLLL is the set of strings formed by concatenating
quadruples of strings in L.

{ aaaaaaaa, aaaaaab, aaaabaa, aaaabb, aabaaaa,

aabaab, aabbaa, aabbb, baaaaaa, baaaab, baabaa,
baabb, bbaaaa, bbaab, bbbaa, bbbb}



Language Exponentiation

 We can define what it means to “exponentiate” a
language as follows:

* LY = 1€}

 Intuition: The only string you can form by gluing no
strings together is the empty string.

 Notice that {e} # 4. Can you explain why?
o Ln+1 = [.I"

« Idea: Concatenating (n+1) strings together works by
concatenating n strings, then concatenating one more.

* Question to ponder: Why define L° = {€}?
* Question to ponder: What is 9°?



The Kleene Closure

 An important operation on languages is the
Kleene closure, or Kleene star, which is
defined as

IL*={weX2* | dn e N.welL"}
 Mathematically:
wWEeEIL* o dn € N.w € L™

* Intuitively, L* is the language all possible
ways of concatenating zero or more strings in
L together, possibly with repetition.

* Question to ponder: What is 0*?



The Kleene Closure

IfL ={a, bb}, then L* = {
E,
a, bb,
aa, abb, bba, bbbb,
aaa, aabb, abba, abbbb, bbaa, bbabb, bbbba, bbbbbb,

Think of L* as The set of sfrings you
can make if you have a collection of
sfamps - one for each string in L -
and you torm every possible sfring
that can be made from those stamps,




Theorem: If L is a regular language, so is L*.



L ={we{a b}*| whas an odd number of a’s and
an even number of b’s }

Construct an NFA for L*.
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DFA for L

L ={we{a b}*| whas an odd number of a’s and
an even number of b’s }

Construct an NFA for L*.
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DFA for L

L ={we{a b}*| whas an odd number of a’s and
an even number of b’s }

Construct an NFA for L*.
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L ={we{a b}*| whas an odd number of a’s and
an even number of b’s }

Construct an NFA for L*.
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a b b ab ab ab aob

L ={we{a b}*| whas an odd number of a’s and
an even number of b’s }

Construct an NFA for L*.
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a b a b a|lb a b

L ={we{a b}*| whas an odd number of a’s and
an even number of b’s }

Construct an NFA for L*.
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a b a b a|lb a b

L ={we{a b}*| whas an odd number of a’s and
an even number of b’s }

Construct an NFA for L*.
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a b a b a|lb a b

L ={we{a b}*| whas an odd number of a’s and
an even number of b’s }

Construct an NFA for L*.
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a b a b a|lb a b

L ={we{a b}*| whas an odd number of a’s and
an even number of b’s }

Construct an NFA for L*.
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L ={we{a b}*| whas an odd number of a’s and
an even number of b’s }

Construct an NFA for L*.



“O Q.0
Q0

DFA for L

a b b

4

a b a b a|lb a b

L ={we{a b}*| whas an odd number of a’s and
an even number of b’s }

Construct an NFA for L*.
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L ={we{a b}*| whas an odd number of a’s and
an even number of b’s }

Construct an NFA for L*.
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L ={we{a b}*| whas an odd number of a’s and
an even number of b’s }

Construct an NFA for L*.
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L ={we{a b}*| whas an odd number of a’s and
an even number of b’s }

Construct an NFA for L*.
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L ={we{a b}*| whas an odd number of a’s and
an even number of b’s }

Construct an NFA for L*.
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L ={we{a b}*| whas an odd number of a’s and
an even number of b’s }

Construct an NFA for L*.
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L ={we{a b}*| whas an odd number of a’s and
an even number of b’s }

Construct an NFA for L*.



“O " Q.0
Q0

DFA for L

a b a b a|lb a b

4

L ={we{a b}*| whas an odd number of a’s and
an even number of b’s }

Construct an NFA for L*.
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L ={we{a b}*| whas an odd number of a’s and

an even number of b’s }
Construct an NFA for L*.
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L ={we{a b}*| whas an odd number of a’s and

an even number of b’s }
Construct an NFA for L*.
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L ={we{a b}*| whas an odd number of a’s and

an even number of b’s }
Construct an NFA for L*.
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L ={we{a b}*| whas an odd number of a’s and
an even number of b’s }

Construct an NFA for L*.
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L ={we{a b}*| whas an odd number of a’s and
an even number of b’s }

Construct an NFA for L*.
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DFA for L

a b a b a|lb a b

L ={we{a b}*| whas an odd number of a’s and
an even number of b’s }

Construct an NFA for L*.
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Question: Why add the new

sfate out front? Why not C
jusT make the old start < '2 a Z >

stale accepting?

DFA for L

a b a b a|lb a b

L ={we{a b}*| whas an odd number of a’s and
an even number of b’s }

Construct an NFA for L*.



Closure Properties

« Theorem: If L1 and L2 are regular
languages over an alphabet %, then so
are the following languages:

e [1 U L>
e JaiN Lo
e J1l>
° Ll*
» These are some of the closure
properties of the regular languages.



Next Time

* Regular Expressions

* Building languages from the ground up!
« Thompson’s Algorithm

A UNIX Programmer in Theoryland.
 Kleene’s Theorem

 From machines to programs!
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